The Fibonacci Quilt Game

Alexandra Newlon Colgate University anewlon@colgate.edu

Joint work with Neelima Borade, Catherine Wahlenmayer, and Wanqiao Xu. Mentored by Steven J. Miller.

REU Conference University of Massachusetts Amherst, July 23, 2019

Outline

- **1** History
- 2 The Fibonacci Quilt Sequence
- The Game
- Game Length
- **5** Future Work

History

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

The Fibonacci Sequence

Let
$$F_0 = F_1 = 1$$
, and for $n >= 2$

$$F_n = F_{n-1} + F_{n-2}$$

The Fibonacci Sequence

Let
$$F_0 = F_1 = 1$$
, and for $n >= 2$

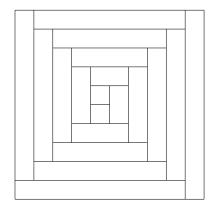
$$F_n = F_{n-1} + F_{n-2}$$

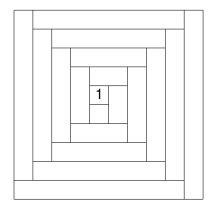
Theorem (Zeckendorf)

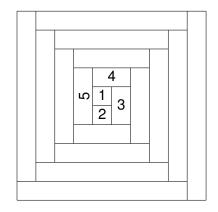
Every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers where

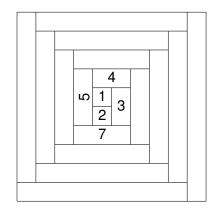
$$F_n = F_{n-1} + F_{n-2}$$

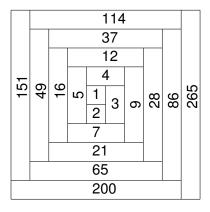
and $F_1 = 1$, $F_2 = 2$.











FQ-legal Decomposition

Definition (Catral, Ford, Harris, Miller, Nelson)

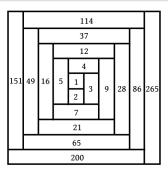
Let an increasing sequence of positive integers $q_{i=1}^{\infty}$ be given. We declare a decomposition of an integer

$$m = q_{l_1} + q_{l_2} + \cdots + q_{l_t}$$

(where $q_{l_i} > q_{l_{i+1}}$) to be an FQ-legal decomposition if for all i, j, $|l_i - l_i| \neq 0, 1, 3, 4$ and $\{1, 3\} \not\subset \{l_1, l_2, \dots, l_t\}$.

Definition (Catral, Ford, Harris, Miller, Nelson)

The Fibonacci Quilt sequence is an increasing sequence of positive integers $\{q_i\}_{i=1}^{\infty}$, where every q_i ($i \ge 1$) is the smallest positive integer that does not have an FQ-legal decomposition using the elements $\{q_1, \ldots, q_{i-1}\}$.



Recurrence Relations

Theorem (Catral, Ford, Harris, Miller, Nelson)

Let q_n denote the n^{th} term in the Fibonacci Quilt, then

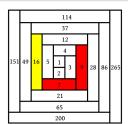
for
$$n \ge 5$$
, $q_{n+1} = q_{n-1} + q_{n-2}$,

for
$$n \ge 6$$
, $q_{n+1} = q_n + q_{n-4}$.

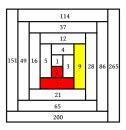
- Inspired by the Zeckendorf Game
- Two player game, alternate turns, last to move wins.
- Start with n 1's (q₁'s)
- A turn is one of the following 4 general rules and some base rules.

- Inspired by the Zeckendorf Game
- Two player game, alternate turns, last to move wins.
- Start with *n* 1's (*q*₁'s)
- A turn is one of the following 4 general rules and some base rules.

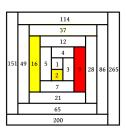
For
$$n \ge 2$$
, $q_n + q_{n+1} \to q_{n+3}$



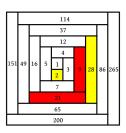
For
$$n \ge 2$$
, $q_n + q_{n+4} \to q_{n+5}$



For
$$n \ge 7$$
, $2q_n \to q_{n+2} + q_{n-5}$



For
$$n \ge 7$$
, $q_n + q_{n+3} \to q_{n-5} + q_{n+4}$



Game Length

To handle base cases, we added additional base rules that

- preserves the total number of pieces
- does not produce violation of legality

Base Rules

To handle base cases, we added additional base rules that

- preserves the total number of pieces
- does not produce violation of legality

Special Rule

$$1+5 \ \rightarrow \ 2+4$$

Note: This rule can only be applied when nothing else can be done.

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0

$$n = 10 = 9 + 1$$

1	2	3		_		9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1			0	0
5	1	1	0	0	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0
0	0	1	0	0	1	0

$$n = 10 = 9 + 1$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
8 7 5 4 3 2	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0
0	0	1	0	0	1	0
1	0	0	0	0	0	1

00000

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

•
$$2q_n \longrightarrow q_{n+2} \land q_{n-5}$$
: $\sqrt{n+2} + \sqrt{n-5} - 2\sqrt{n} < 0$

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

•
$$2q_n \longrightarrow q_{n+2} \land q_{n-5}$$
: $\sqrt{n+2} + \sqrt{n-5} - 2\sqrt{n} < 0$

•
$$q_n \wedge q_{n+3} \longrightarrow q_{n+4} \wedge q_{n-5}$$
:
 $\sqrt{n+4} + \sqrt{n-5} - \sqrt{n} - \sqrt{n+3} < 0$

Game Length ○●○○○

The Last Move

		l .								28	l .	
1	0	0	0	1	0	?	0	0	?	?	?	?

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	?	0	0	?	?	?	?
If there is no 9:												
1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	0	0	0	?	?	?	?
0	1	0	1	0	0	0	0	0	?	?	?	?

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	?	0	0	?	?	?	?
If there is no 9:												
1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	0	0	0	?	?	?	?
0	1	0	1	0	0	0	0	0	?	?	?	?
If there is a 9:												
1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	1	0	0	0	0	?	?
0	1	0	1	0	0	1	0	0	0	0	?	?
1	1	0	0	0	0	0	1	0	0	0	?	?

Notation

Let L(n) denote the maximum number of terms in an FQ-legal decomposition of n. Let I(n) denote the minimum number of terms in an FQ-legal decomposition of n.

Examples:

$$20 = 16 + 4 = 12 + 7 + 1$$

 $L(20) = 3$, $I(20) = 2$

Notation

Let L(n) denote the maximum number of terms in an FQ-legal decomposition of n. Let I(n) denote the minimum number of terms in an FQ-legal deocomposition of n.

Examples:

$$20 = 16 + 4 = 12 + 7 + 1$$

 $L(20) = 3, I(20) = 2$
 $50 = 49 + 1 = 28 + 16 + 4 + 2$
 $L(50) = 4, I(50) = 2$

Theorem

The shortest possible game on n is completed in n - L(n) moves.

Theorem

The shortest possible game on n is completed in n - L(n) moves.

Proof Sketch: Induction on n.

Theorem

The shortest possible game on n is completed in n - L(n) moves.

Proof Sketch: Induction on n.

If n is in the Fibonacci Quilt Sequence, denoted q_i

$$q_{i-3} + q_{i-2} = q_i$$

Theorem

The shortest possible game on n is completed in n - L(n) moves.

Proof Sketch: Induction on n.

If n is in the Fibonacci Quilt Sequence, denoted q_i

$$q_{i-3} + q_{i-2} = q_i$$

If n is not in the sequence

$$n = q_{i_1} + q_{i_2} + \cdots + q_{i_{I(n)}}$$

Number of moves:

$$(q_{i_1}-1)+(q_{i_2}-1)+\cdots+(q_{i_{L(n)}}-1)$$

= $(q_{i_1}+q_{i_2}+\cdots+q_{i_{L(n)}})-L(n)$
= $n-L(n)$

Distribution of Game Lengths

Conjecture

The distribution of a random game length approaches Gaussian as n increases.

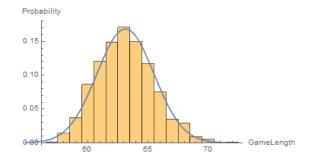


Figure: Distribution of 1000 games on n=60

Future Work

• Is there a deterministic game that always results in the lower bound?

 What patterns emerge in the winner of certain deterministic games as n increases?

- Does either player have a winning strategy?
 - Analogous result on the Zeckendorf Game shows that for n > 2, player 2 has a winning strategy

Thank You

References

- M. Catral, P.L. Ford, P.E. Harris, S.J. Miller, D. Nelson, Legal Decomposition Arising From Non-Positive Linear Recurrences. Fibonacci Quarterly (54 (2016), no. 4, 348-365).
- P. Baird-Smith, A. Epstein, K. Flint, S.J. Miller, The Zeckendorf Game. (2018).

Thank you to Dr. Miller (NSF Grant DMS1561945), the SMALL program (NSF Grant DMS1659037) and Williams College.