The Fibonacci Quilt Game

Alexandra Newlon
Colgate University anewlon@colgate.edu

Joint work with Neelima Borade, Catherine Wahlenmayer, and Wanqiao Xu. Mentored by Steven J. Miller.

REU Conference
University of Massachusetts Amherst, July 23, 2019

Outline

(2) The Fibonacci Quilt Sequence
(3) The Game

4 Game Length
(5) Future Work

The Fibonacci Sequence

$1,1,2,3,5,8,13,21,34,55 \ldots$

The Fibonacci Sequence

$1,1,2,3,5,8,13,21,34,55 \ldots$
Let $F_{0}=F_{1}=1$, and for $n>=2$

$$
F_{n}=F_{n-1}+F_{n-2}
$$

The Fibonacci Sequence

$$
1,1,2,3,5,8,13,21,34,55 \ldots
$$

Let $F_{0}=F_{1}=1$, and for $n>=2$

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Theorem (Zeckendorf)

Every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers where

$$
F_{n}=F_{n-1}+F_{n-2}
$$

and $F_{1}=1, F_{2}=2$.

The Fibonacci Quilt Sequence

The Fibonacci Quilt Sequence

The Fibonacci Quilt Sequence

The Fibonacci Quilt Sequence

The Fibonacci Quilt Sequence

FQ-legal Decomposition

Definition (Catral, Ford, Harris, Miller, Nelson)

Let an increasing sequence of positive integers $q_{i=1}^{\infty}$ be given. We declare a decomposition of an integer

$$
m=q_{t_{1}}+q_{t_{2}}+\cdots+q_{t_{t}}
$$

(where $q_{i j}>q_{l_{i+1}}$) to be an FQ-legal decomposition if for all i, j, $\left|l_{i}-I_{j}\right| \neq 0,1,3,4$ and $\{1,3\} \not \subset\left\{I_{1}, I_{2}, \ldots, I_{t}\right\}$.

The Fibonacci Quilt Sequence

Definition (Catral, Ford, Harris, Miller, Nelson)

The Fibonacci Quilt sequence is an increasing sequence of positive integers $\left\{q_{i}\right\}_{i=1}^{\infty}$, where every $q_{i}(i \geq 1)$ is the smallest positive integer that does not have an FQ-legal decomposition using the elements $\left\{q_{1}, \ldots, q_{i-1}\right\}$.

Recurrence Relations

Theorem (Catral, Ford, Harris, Miller, Nelson)

Let q_{n} denote the $n^{\text {th }}$ term in the Fibonacci Quilt, then

$$
\begin{gathered}
\text { for } n \geq 5, q_{n+1}=q_{n-1}+q_{n-2}, \\
\text { for } n \geq 6, q_{n+1}=q_{n}+q_{n-4} .
\end{gathered}
$$

General Rules

- Inspired by the Zeckendorf Game
- Two player game, alternate turns, last to move wins.
- Start with n 1's (q_{1} 's)
- A turn is one of the following 4 general rules and some base rules.

General Rules

- Inspired by the Zeckendorf Game
- Two player game, alternate turns, last to move wins.
- Start with n 1's ($q 1$'s)
- A turn is one of the following 4 general rules and some base rules.

Rule 1

$$
\text { For } n \geq 2, q_{n}+q_{n+1} \rightarrow q_{n+3}
$$

General Rules

Rule 2

For $n \geq 2, q_{n}+q_{n+4} \rightarrow q_{n+5}$

General Rules

Rule 3

For $n \geq 7,2 q_{n} \rightarrow q_{n+2}+q_{n-5}$

Genereal Rules

Rule 4

$$
\text { For } n \geq 7, q_{n}+q_{n+3} \rightarrow q_{n-5}+q_{n+4}
$$

151	114								
				37					
				12					
				4					
	49	16	5	1					
				$2{ }^{3}$	9	28			265
				7					
				21					
				65					
				200					

Base Rules

To handle base cases, we added additional base rules that

- preserves the total number of pieces
- does not produce violation of legality

Base Rules

To handle base cases, we added additional base rules that

- preserves the total number of pieces
- does not produce violation of legality

Special Rule

$$
1+5 \rightarrow 2+4
$$

Note: This rule can only be applied when nothing else can be done.

Example Game

$$
1,2,3,4,5,7,9,12,16,21,28 \ldots
$$

$\mathrm{n}=10=9+1$

1	2	3	4	5	7	9
10	0	0	0	0	0	0

Example Game

$$
1,2,3,4,5,7,9,12,16,21,28 \ldots
$$

$\mathrm{n}=10=9+1$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& \mathrm{n}=10=9+1 \\
& \begin{array}{c|c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 7 & 9 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 1 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& \mathrm{n}=10=9+1
\end{aligned}
$$

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& \mathrm{n}=10=9+1 \\
& \begin{array}{c|c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 7 & 9 \\
\hline 10 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 1 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 1 & 0 & 0 & 0 & 0 \\
5 & 1 & 1 & 0 & 0 & 0 & 0 \\
4 & 0 & 2 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& n=10=9+1
\end{aligned}
$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& n=10=9+1
\end{aligned}
$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& n=10=9+1
\end{aligned}
$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& n=10=9+1
\end{aligned}
$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0
0	0	1	0	0	1	0

Example Game

$$
\begin{aligned}
& 1,2,3,4,5,7,9,12,16,21,28 \ldots \\
& n=10=9+1
\end{aligned}
$$

1	2	3	4	5	7	9
10	0	0	0	0	0	0
8	1	0	0	0	0	0
7	0	1	0	0	0	0
5	1	1	0	0	0	0
4	0	2	0	0	0	0
3	0	1	1	0	0	0
2	0	1	0	1	0	0
0	1	1	0	1	0	0
0	0	1	0	0	1	0
1	0	0	0	0	0	1

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the squares of the indices of the terms is a strict monovarient.

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the squares of the indices of the terms is a strict monovarient.

- $q_{n} \wedge q_{n+1} \longrightarrow q_{n+3}: \sqrt{n+3}-\sqrt{n}-\sqrt{n+1}<0$

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the squares of the indices of the terms is a strict monovarient.

- $q_{n} \wedge q_{n+1} \longrightarrow q_{n+3}: \sqrt{n+3}-\sqrt{n}-\sqrt{n+1}<0$
- $q_{n} \wedge q_{n+4} \longrightarrow q_{n+5}: \sqrt{n+5}-\sqrt{n}-\sqrt{n+4}<0$

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the squares of the indices of the terms is a strict monovarient.

- $q_{n} \wedge q_{n+1} \longrightarrow q_{n+3}: \sqrt{n+3}-\sqrt{n}-\sqrt{n+1}<0$
- $q_{n} \wedge q_{n+4} \longrightarrow q_{n+5}: \sqrt{n+5}-\sqrt{n}-\sqrt{n+4}<0$
- $2 q_{n} \longrightarrow q_{n+2} \wedge q_{n-5}: \sqrt{n+2}+\sqrt{n-5}-2 \sqrt{n}<0$

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the squares of the indices of the terms is a strict monovarient.

- $q_{n} \wedge q_{n+1} \longrightarrow q_{n+3}: \sqrt{n+3}-\sqrt{n}-\sqrt{n+1}<0$
- $q_{n} \wedge q_{n+4} \longrightarrow q_{n+5}: \sqrt{n+5}-\sqrt{n}-\sqrt{n+4}<0$
- $2 q_{n} \longrightarrow q_{n+2} \wedge q_{n-5}: \sqrt{n+2}+\sqrt{n-5}-2 \sqrt{n}<0$
- $q_{n} \wedge q_{n+3} \longrightarrow q_{n+4} \wedge q_{n-5}$:
$\sqrt{n+4}+\sqrt{n-5}-\sqrt{n}-\sqrt{n+3}<0$

The Last Move

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	$?$	0	0	$?$	$?$	$?$	$?$

The Last Move

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	$?$	0	0	$?$	$?$	$?$	$?$

If there is no 9 :

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	0	0	0	$?$	$?$	$?$	$?$
0	1	0	1	0	0	0	0	0	$?$	$?$	$?$	$?$

The Last Move

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	$?$	0	0	$?$	$?$	$?$	$?$

If there is no 9 :

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	0	0	0	$?$	$?$	$?$	$?$
0	1	0	1	0	0	0	0	0	$?$	$?$	$?$	$?$

If there is a 9 :

1	2	3	4	5	7	9	12	16	21	28	37	49
1	0	0	0	1	0	1	0	0	0	0	$?$	$?$
0	1	0	1	0	0	1	0	0	0	0	$?$	$?$
1	1	0	0	0	0	0	1	0	0	0	$?$	$?$

Lower Bound on Game Length

Notation

Let $L(n)$ denote the maximum number of terms in an FQ-legal decomposition of n. Let $l(n)$ denote the minimum number of terms in an FQ-legal deocomposition of n.

Examples:
$20=16+4=12+7+1$
$L(20)=3, I(20)=2$

Lower Bound on Game Length

Notation

Let $L(n)$ denote the maximum number of terms in an FQ-legal decomposition of n. Let $l(n)$ denote the minimum number of terms in an FQ-legal deocomposition of n.

Examples:
$20=16+4=12+7+1$
$L(20)=3, I(20)=2$
$50=49+1=28+16+4+2$
$L(50)=4, l(50)=2$

Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n-L(n)$ moves.

Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n-L(n)$ moves.

Proof Sketch: Induction on n.

Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n-L(n)$ moves.

Proof Sketch: Induction on n.
If n is in the Fibonacci Quilt Sequence, denoted q_{i}

$$
q_{i-3}+q_{i-2}=q_{i}
$$

Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n-L(n)$ moves.

Proof Sketch: Induction on n.
If n is in the Fibonacci Quilt Sequence, denoted q_{i}

$$
q_{i-3}+q_{i-2}=q_{i}
$$

If n is not in the sequence

$$
n=q_{i_{1}}+q_{i_{2}}+\cdots+q_{i_{L(n)}}
$$

Number of moves:

$$
\begin{gathered}
\left(q_{i_{1}}-1\right)+\left(q_{i_{2}}-1\right)+\cdots+\left(q_{i_{L(n)}}-1\right) \\
=\left(q_{i_{1}}+q_{i 2}+\cdots+q_{i_{L(n n}}\right)-L(n) \\
=n-L(n)
\end{gathered}
$$

Distribution of Game Lengths

Conjecture

The distribution of a random game length approaches Gaussian as n increases.

Figure: Distribution of 1000 games on $\mathrm{n}=60$

Future Work

- Is there a deterministic game that always results in the lower bound?
- What patterns emerge
in the winner of certain deterministic games as n increases?
- Does either player have a winning strategy?
- Analogous result on the Zeckendorf Game shows that for $n>2$, player 2 has a winning strategy

Thank You

References

- M. Catral, P.L. Ford, P.E. Harris, S.J. Miller, D. Nelson, Legal Decomposition Arising From Non-Positive Linear Recurrences. Fibonacci Quarterly (54 (2016), no. 4, 348-365).
- P. Baird-Smith, A. Epstein, K. Flint, S.J. Miller, The Zeckendorf Game. (2018).

Thank you to Dr. Miller (NSF Grant DMS1561945), the SMALL program (NSF Grant DMS1659037) and Williams College.

